

Patrick Hemp

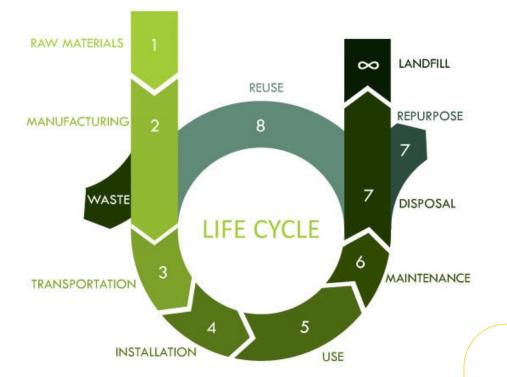
patrick@icomia.com

ICOMIA & IMEC Technical Consultant

PROPELLING OUR FUTURE

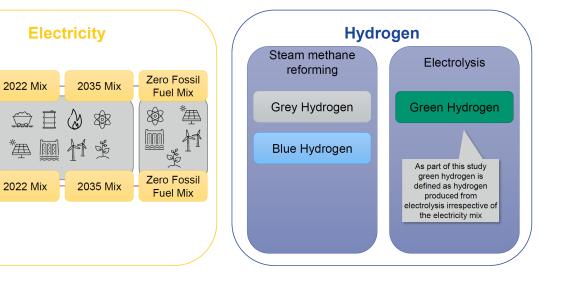
About ICOMIA

- We have been a global advocate for the recreational marine industry since 1966
- We unite national boating federations & associations into one global organisation
- We present a strong and unified voice for the advancement of our industry through collaboration, research and advocacy
- Promote the improvement of boating safety, sustainability and responsibility



Technologies Investigated

Suitability Analysis of 5 Power System Options								
		Ø	Po		4	7	H ₂	
	Gasoline or diesel ICESustainable drop-in fuel ICE (HVO or E-gasoline)			Hybrid-electric	vbrid-electric Battery electric		₂ ICE or fuel cell	
For 9 Craft Categories								
	Inflatable boat Runabout / day cruiser		y cruiser	PWC Inland v		ay vessel	Sailing yacht	
	,							
		Fishing boat	Pontoon boat	Displaceme	ent motorboat	High performance n	notoryacht	
PROPELLING OUR FUTURE							ASSOCIATION OF EST ONIAN MARINE INDUSTRIES	


Task 1	Decarbonisation Options Overview of each propulsion system type including systems required, impact on craft, infrastructure required and fuel supply options	
Task 2	Greenhouse Gas Life Cycle Assessment (LCA) Lifecycle assessment to ISO 14044 and 14067 including manufacture, use phase and end of life for energy converters and energy carriers	PROPELLING OUR FUTURE
Task 3	Total Cost Of Ownership Purchase cost and operational costs including energy and maintenance for energy converters, energy carriers and new infrastructure	Pathways to Propulsion Decarbonisation for the Recreational Marine Industry Synopsis Report Report Authors
Task 4	Boat Power Systems Implications Analysis of life expectancy, maintenance requirements, performance, safety and commercial availability	Ricardo: Albert Zenié, Katie Lam, Rachel Jobson, Sam Hinton, Nikos Vasileiadis, Tim Scarbrough, Sofia Condes ICOMIA: Jeff Wasil Report Contributors Ricardo: Richard Osborne, Philip Hopwood, John Hughes, Matthew Keenan, Hassan Malik, Alec Davies, Gael Chouchelamane, Bahareh Yazdani Damavandi, Richard King, Richard Cornwell, Geoff Pownall, Nikolas Hill, Rob Parkinson
Task 5	Infrastructure Implications Analysis of life expectancy, safety, expected availability of fuels or energy	
Task 6	Suitability And Ranking Overall suitability of different options for each craft type and usage case	
		ASSOCIATION OF EST ONIAN MARINE INDUSTRIES

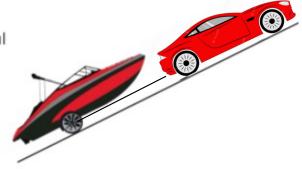
Environmental Life Cycle Assessment of a Standalone Hybrid Energy Storage System for Rural Electrification Ayesha Shaik Mohiddin, Supervisor: M. L. Dennis Wong, and Co-Supervisor: Chee Ming Choo

- A full independent peer-reviewed cradle-to-grave lifecycle analysis needed
- This included specific well-to-tank breakdowns of each fuel or energy pathway and met ISO and IPCC requirements and recommendations
- Other inputs included emissions data, energy consumption, operational profiles, bill of materials, benchmark data, end-of-life assumptions of materials

What the majority of cars are doing right now...

What the majority of boats are doing right now...

If a car were a boat...

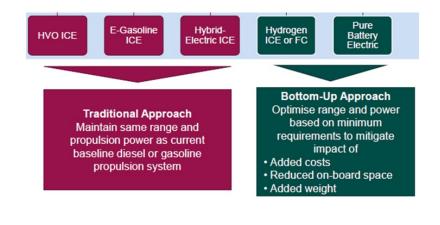

ELECTRIC VEHICLE ON LAND

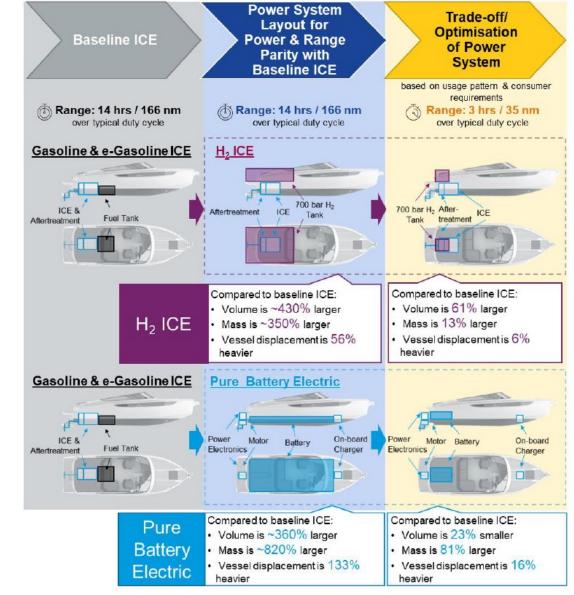
100 kWh Battery Pack 348 Mile Range

It takes **10X** the energy to move a recreational boat through the water compared to a car. This is equivalent to towing a boat up a never-ending hill.

ELECTRIC VEHICLE ON WATER Electric Boat 100 kWh Battery Pack 33 Mile Range

Key Considerations


- 1. The Carbon Balance Sheet of the existing fleet 80% of the current fleet do not meet the requirements of RCD II
- 2. Understanding the supply chain and manufacturing utilising full LCA analysis of the power systems and hull & deck structures
- 3. Acceptable levels of compromise for range, performance, space and cost
- The typically low levels of usage for most recreational boats, typically < 50 hours per year with a long service life
- GRID MIX The report assumes a reduction in the carbon associated with electricity generation between now and 2035



How each technology impacts the craft and why an optimsed power system is used

 Electric only and hydrogen propulsion craft modelling required a significant reduction in range to mitigate the impacts on vessel mass, on-board volume and purchase price

It's critical to understand how the boat will be used during its lifetime including the duty-cycle, annual hours of operation, and power requirements of the vessel before assuming a specific technology will reduce CO₂ emissions

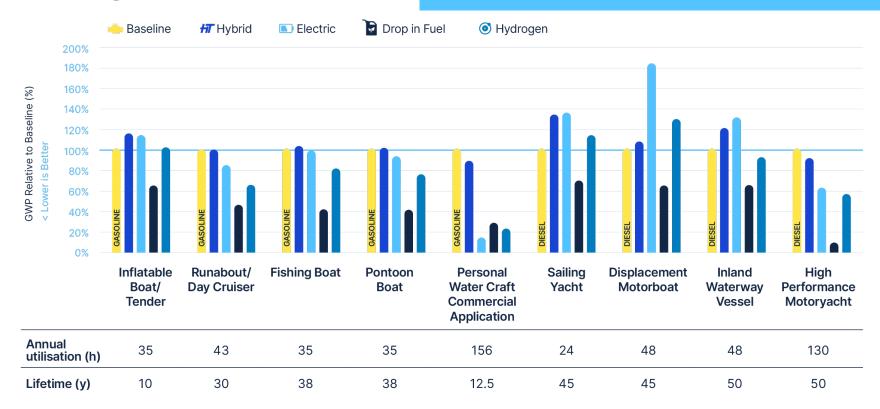


Figure 2 - Lowest global warming potential (GWP) for each propulsion system relative to the baseline ICE of each craft in 2035 (kgCO₂eq/vh). Lower values result in lower CO₂ emissions over the lifetime of the craft.

Key Findings

Conclusions of the Study

- 1. There is no 'one size fits all' solution
- 2. There is significant CO2 in the supply chain of materials & energy storage
- 3. Electric propulsion is only part of the solution
- 4. R&D and technological improvements are required
- 5. Global safety protocols/standards need to be developed or revised

www.propellingourfuture.com

